
S. Shin et al. / Journal of Economic Research 29 (2024) 77-112  77 

Final-offer arbitration and successive elimination of 
weakly dominated offers*1 

Sungwhee Shin i 

University of Seoul 

Kiho Choi ii 

University of Seoul 

Minsoo Cho iii 

Florida State University 

 

Abstract  

We analyze the final-offer salary arbitration when the parties have 
perfect information on the evaluation of the arbitrator. We use a discrete 
model in which the parties offer discrete numbers. We apply the criterion 
of successive elimination of weakly dominated offers to identify the final 
outcomes. We found that attitudes toward risk affected outcomes. When 
parties are risk-averse, the outcome of the arbitration is equal to the 
arbitrator’s evaluation. When the parties are risk-neutral or weakly risk-
loving, the outcome diverges slightly from the arbitrator’s evaluation. 
When parties are strongly risk-loving, the outcomes are dispersed over a 
wide range of offers. 
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1 Introduction 

In final-offer arbitration, the two parties in a dispute submit final offers to 
an arbitrator. The arbitrator then chooses one of the two offers. Similar 
procedure was used to determine Socrates’ punishment after he was 
convicted in Athens, B.C. 399. The origination of the concept of final-offer 
arbitration (FOA), however, is credited to Stevens (1966) and the FOA has 
since been used to arbitrate many disputes. For instance, it has been used for 
salary arbitration in Major League Baseball since 1973. Many states in the 
United States use the FOA to settle disputes with public employees in 
essential public services, such as firefighting, nursing, and police services.   

Strikes as a last resort in labor-management disputes are banned for 
public security purposes in the case of employees of essential public services. 
Instead, employees were granted the right to resort to arbitration. 
Conventional arbitration is coercive. However, coercive arbitration has 
several limitations. Parties may complain about the arbitration results 
because of the arbitrator’s arbitrary decisions. To avoid this, the arbitrator 
tends to compromise and split the pie between the claims of both parties, 
which induces them to present excessive claims to their advantage. The 
arbitrator may also 'split the baby' while compromising the two parties' 
claims (Chetwynd 2009). In addition, the arbitrator has the heavy burden of 
producing a reasonable compromise. This arbitration procedure required 
considerable time and hard work. To overcome these difficulties, the FOA 
was introduced. Under this procedure, the burden of evidence collection and 
related data presentation is distributed to the parties, which eases the 
burden on the arbitrator and decentralizes the process, thereby reducing 
complaints regarding the arbitrariness of arbitration. The FOA is more 
conducive to settlement than conventional arbitration because it exposes the 
parties to the risk of losing the case and being swayed by the other party’s 
offer. It is also more conducive to compromise and considerate offers than 
conventional arbitration because a compromised offer raises the probability 
of adoption by the arbitrator. 

The final-offer salary arbitration of the MLB illustrates the successful 
operation of the FOA. According to Hill and Jolly (2014), the FOA is 
conducted for each player with a service time of three to six years. Either 
eligible players or owners can file for arbitration between January 5 and 15, 
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following a season. Players and clubs exchange offers on January 18. The 
league schedules arbitration hearings between February 1 and 20. A three-
member arbitration panel usually renders a decision within 24 hours of the 
conclusion of the hearing. 

Existing literature examines the Nash equilibrium of FOA games. For 
instance, Crawford (1979) shows that there is a unique Nash equilibrium in 
an FOA with perfect information. Faber (1980), Chatterjee (1981), and Brams 
and Merrill (1983) consider the Nash equilibrium of the FOA with imperfect 
information on the player's proper value in the mind of the arbitrator.  

We use the successive elimination of weakly dominated offers (strategies) 
as a criterion for sorting the solution of the FOA game. We consider a FOA 
with perfect information on the value of a player. We identify pairs of offers 
(strategy profiles) that survive the successive elimination of weakly 
dominated offers (SEWDO) under various attitudes toward the risks of the 
parties. The analysis shows that as parties become risk-loving, the outcome 
tends to diverge from the arbitrator’s evaluation. 

The remainder of this paper is organized as follows: Section 2 presents the 
basic model and an example. Section 3 presents the main results of the FOA 
under perfect information when the parties are risk-averse. Section 4 
presents the results of the FOA when the parties are risk-neutral. Section 5 
presents the results of the FOA when the parties are risk-loving. Finally, 
Section 6 concludes the paper. 

2 A Model of Final Offer Arbitration and An 
Example 

There is a club (or buyer) and a player (or seller). There is an arbitrator 
who thinks that the appropriate amount of the player’s salary is 𝑣 > 0. Both 
the club and player know the amount 𝑣  of salary in the mind of the 
arbitrator. The club offers an amount 𝑥 of salary, and the player offers an 
amount 𝑦 of salary. The value of 𝑣 takes a discrete value 1,2, …. The values 
of 𝑥  and 𝑦  also take discrete values 0,1,2, … . Then, an arbitrator chooses 
the one closest to the amount 𝑣  between the two offers by the club and 
player. If the two offers are at the same distance from 𝑣 , the arbitrator 
chooses each offer with a probability of 1/2.  



80  Final-offer arbitration and successive elimination of weakly dominated offers 

The FOA is modeled as a game form in which the club and player are 
participants, and the strategies of the club and player are salary offers. The 
outcome function 𝑔(𝑥, 𝑦) of the game form denotes the player’s arbitraged 
value (salary) when the pair of salary offers is (𝑥, 𝑦). When 𝑥 + 𝑦 = 2𝑣, 𝑥 ≠𝑦 , the outcome (salary) is probabilistic. The probabilistic outcome is 
represented by a distribution function 𝐹 over non-negative real numbers. 
We call it a lottery 𝑙. Agent 𝑗 has a preference relation 𝑅௝ over lotteries, 𝑗 =𝑐, 𝑝 where c is for club and p is for player. The preference relation is complete, 
transitive, continuous, and satisfies the independence axiom. When 𝑙 𝑅௝ 𝑙′ 
and not 𝑙ᇱ𝑅௝ 𝑙  for two lotteries 𝑙, 𝑙′ , we say that 𝑗  strictly prefers 𝑙   to 𝑙′ 
and denote that 𝑙 𝑃௝ 𝑙′. When 𝑙 𝑅௝ 𝑙′ and 𝑙ᇱ 𝑅௝ 𝑙, we say that 𝑗 is indifferent 
between 𝑙  and 𝑙′ and denote that 𝑙 𝐼௝ 𝑙′. The preference over the lotteries 
varies according to attitudes toward risk. We introduce a certainty-
equivalent outcome function 𝑔௖(𝑥, 𝑦) for club and 𝑔௣(𝑥, 𝑦)  for player. The 
certainty equivalent of a lottery 𝑙  for agent 𝑗  is the monetary outcome 
(salary) 𝑧 such that  1௭~௝𝑙 where 1௭ is the lottery such that the probability 
of 𝑧 is 1. The game form can be represented by a table in which the numbers 
in the leftmost cells denote the club’s offer and the numbers in the uppermost 
cells indicate the player’s offer. The numbers in the other cells denote the 
arbitraged salaries of the player. Note that, when the outcome is probabilistic, 
both 𝑔௖(𝑥, 𝑦)  and 𝑔௣(𝑥, 𝑦)  are inscribed in the cell. The club prefers a 
lower salary, and the player prefers a higher salary.  

Player is risk-averse if the certainty equivalent of a lottery is less than the 
expected value of the lottery and larger than the minimum amount with 
positive probability of the lottery. Player is extremely risk-averse if the 
certainty equivalent of a lottery is equal to the minimum amount of the 
lottery. Player is risk-neutral if the certainty equivalent of a lottery is equal 
to the expected value of the lottery. Player is risk-loving if the certainty 
equivalent of a lottery is larger than the expected value of the lottery and less 
than the maximum amount of the lottery. Player is extremely risk-loving if 
the certainty equivalent of a lottery is equal to the maximum amount of the 
lottery. Symmetric definition applies to club’s attitude towards risk. Later, we 
will define the weak risk-lovingness and the strong risk-lovingness when we 
prove the related results. 

Now, suppose that 𝑣 = 3 , and that the club and player are both risk-
averse. The game form of the FOA is presented in Table 1. 

An offer (or strategy) 𝑥 for the club is weakly dominated by another offer 
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under another offer 𝑥′ regardless of the player’s offer, and larger than that 
for at least one offer chosen by the player. The weakly dominated offer for the 
player is defined similarly. We denote these weak dominance relations for 
club and player as 𝑥 ≺௖ 𝑥′  and 𝑦 ≺௣ 𝑦′  respectively. An offer is 
undominated if it is not weakly dominated by any other offers. 

In the example where 𝑣 = 3 and both the club and player are risk-averse (3 < 𝑔௖(𝑥, 𝑦) < max(𝑥, 𝑦) , min(𝑥, 𝑦) < 𝑔௣(𝑥, 𝑦) < 3  when 𝑥 + 𝑦 =2𝑣, 𝑥 ≠ 𝑦 ), we obtain a unique solution (𝑥, 𝑦) = (3,3) , applying the 
successive elimination of weakly dominated offers. The successive 
elimination procedure is as follows: 

 
Table 1. The normal form of final-offer arbitration where the arbitrator’s 

evaluation 𝑣 = 3 

 
 
Club 

 Player 

 0 1 2 3 4 5 6 7 8 9 ... 

0 0 1 2 3 4 5 
𝑔௣<3
<𝑔௖ 0 0 0  

1 1 1 2 3 4 𝑔௣<3
<𝑔௖ 1 1 1 1  

2 2 2 2 3 
𝑔௣<3
<𝑔௖ 2 2 2 2 2  

3 3 3 3 3 3 3 3 3 3 3  

4 4 4 
𝑔௣<3
<𝑔௖ 3 4 4 4 4 4 4  

5 5 
𝑔௣<3
<𝑔௖ 2 3 4 5 5 5 5 5  

6 𝑔௣<3
<𝑔௖ 1 2 3 4 5 6 6 6 6  

7 0 1 2 3 4 5 6 7 7 7  

8 0 1 2 3 4 5 6 7 8 8  

9 0 1 2 3 4 5 6 7 8 9  ⋮            

 
First round of elimination of weakly dominated offers 

 
We identified the weakly dominated offers of club and player. Note that if 

the offer 𝑦 of player is weakly dominated by another offer 𝑦′ of player, then 
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the offer 𝑥ᇱ = 𝑦′ of the club is weakly dominated by the offer 𝑥 = 𝑦, and 
vice versa. 

The club’s weakly dominated offers are as follows: 
The club’s offer 𝑥 = 6,7, …  is weakly dominated by offer 𝑥ᇱ = 0 . The 

club’s offer 𝑥 = 5 is weakly dominated by offer 𝑥ᇱ = 1. Generally, a club’s 
offer 𝑥 = 𝑣 + 𝑖, 𝑖 = 1,2,3 is weakly dominated by the offer 𝑥ᇱ = 𝑣 − 𝑖. 

Thus, the club’s offers that survive the elimination of weakly dominated 
offers are 𝑥 = 0,1,2,3. This is because the club’s offer 𝑥 = 0,1,2,3 is the best 
response to the player’s offer 𝑦 = 7 − 𝑥. 

 
The player’s weakly dominated offers are as follows: 
Player’s offer 𝑦 = 7  is weakly dominated by another offer 𝑦ᇱ = 8 . The 

player’s offer 𝑦 = 8 is weakly dominated by 𝑦ᇱ = 9. Generally, the player’s 
offer 𝑦 = 2𝑣 + 𝑖, 𝑖 = 1,2, … is weakly dominated by 𝑦′ = 2𝑣 + 𝑖 + 1. 

The player’s offer 𝑦 = 0 is weakly dominated by 𝑦ᇱ = 6,7,8, …. 
The player’s offer 𝑦 = 1 is weakly dominated by 𝑦ᇱ = 5. Generally, the 

player’s offer 𝑦 = 𝑣 − 𝑖, 𝑖 = 1,2,3  is weakly dominated by the offer 𝑦ᇱ =𝑣 + 𝑖, as shown in Table 1. 
Thus, the offers that survive the elimination of weakly dominated offers 

are 𝑦 = 3,4,5,6 . This is because the player’s offer 𝑦 = 3,4,5  is the best 
response to the club’s offer 𝑥 = 5 − 𝑦. The player’s offer 𝑦 = 6 is better than 
the player’s offer 𝑦ᇱ = 0,1,2,3,4,5  when club’s offer 𝑥 = 6  and is better 
than the player’s offer 𝑦ᇱ = 7,8,9, … when club’s offer 𝑥 = 0. 

 
Second round of elimination of weakly dominated offers 
 

Table 2. Second round of elimination of weakly dominated offers 

    
 
Club 

  
Player 

 3 4 5 6 

0 3 4 5 𝑔௣<3<𝑔௖
1 3 4 𝑔௣<3<𝑔௖ 1 

2 3 𝑔௣<3<𝑔௖ 2 2 
 3 3 3 3 3 

 
Club’s offer 0 is weakly dominated by offer 3.  
Player’s offer 6 is weakly dominated by offer 3.  
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Third round of elimination of weakly dominated offers 
 

Table 3. Third round of elimination of weakly dominated offers 

 
Club 

 Player

 3 4 5 

1 3 4 𝑔௣<3<𝑔௖
2 3 𝑔௣<3<𝑔௖ 2 

 3 3 3 3 

 
Club’s offer 1 is weakly dominated by offer 3.  
Player’s offer 5 is weakly dominated by offer 3.  
Similarly, in the fourth round of elimination, the club’s offer 2 is weakly 

dominated by offer 3, and the player’s offer 4 is weakly dominated by offer 3. 
After eliminating the weakly dominated offers, we obtain the pair of offers (𝑥, 𝑦) = (3,3).  

3 The Case Where the Parties are Risk-averse 

The outcomes of the arbitration can be classified into four cases, with each 
case corresponding to the area in Table 4. 

Case 1: 𝑥 < 𝑦, 𝑥 + 𝑦 < 2𝑣 → |𝑥 − 𝑣| > |𝑦 − 𝑣|  (player wins), 𝑔௖(𝑥, 𝑦) =𝑔௣(𝑥, 𝑦) = 𝑦 

Case 2: 𝑥 < 𝑦, 𝑥 + 𝑦 > 2𝑣 → |𝑥 − 𝑣| < |𝑦 − 𝑣|  (club wins), 𝑔௖(𝑥, 𝑦) =𝑔௣(𝑥, 𝑦) = 𝑥 

Case 3: 𝑥 > 𝑦, 𝑥 + 𝑦 > 2𝑣 → |𝑥 − 𝑣| > |𝑦 − 𝑣|  (player wins), 𝑔௖(𝑥, 𝑦) =𝑔௣(𝑥, 𝑦) = 𝑦 

Case 4: 𝑥 > 𝑦, 𝑥 + 𝑦 < 2𝑣 → |𝑥 − 𝑣| < |𝑦 − 𝑣|  (club wins), 𝑔௖(𝑥, 𝑦) =𝑔௣(𝑥, 𝑦) = 𝑥 

If 𝑥 ≠ 𝑦  and 𝑥 + 𝑦 = 2𝑣 , then 𝑣 < 𝑔௖(𝑥, 𝑦) < max(𝑥, 𝑦)  and min(𝑥, 𝑦) < 𝑔௣(𝑥, 𝑦) < 𝑣 , because the parties are risk-averse. If 𝑥 = 𝑦 , then 𝑔௖(𝑥, 𝑦) = 𝑔௣(𝑥, 𝑦) = 𝑥 = 𝑦. 
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Table 4. The normal form of final-offer arbitration in the first round 

        player         

  0 1 ... v-i ... v-1 v v+1 ... v+i ... 2v-1 2v 2v+1 2v+2 ... 

 0 0 1 ... v-i ⋯ v-1 v v+1 ... v+i ⋯ 2v-1  0 0 ... 

 1 1 1 ... v-i ⋯ v-1 v v+1 ... v+i ⋯  1 1 1 ... 

 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

 v-i v-i v-i ⋯ v-i ⋯ v-1 v v+1 ⋯ ⋯ v-i v-i v-i v-i ⋯ 

 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

 v-1 v-1 v-1 ... v-1 ⋯ v-1 v  ... v-1 ⋯ v-1 v-1 v-1 v-1 ... 

club v v v ... v ⋯ v v v ... v ⋯ v v v v ... 

 v+1 v+1 v+1 ... v+1 ⋯  v v+1 ... v+1 ⋯ v+1 v+1 v+1 v+1 ... 

 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

 v+i v+i v+i  ⋯ v-1 v v+1 v+i ⋯ v+i v+i v+i v+i ⋯ 

 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

 2v-1 2v-1  ... v-i ⋯ v-1 v v+1 ... v+i ⋯ 2v-1 2v-1 2v-1 2v-1 ... 

 2v  1 ... v-i ⋯ v-1 v v+1 ... v+i ⋯ 2v-1 2v 2v 2v ... 

 2v+1 0 1 ... v-i ⋯ v-1 v v+1 ... v+i ⋯ 2v-1 2v 2v+1 2v+1 ... 

 2v+2 0 1 ... v-i ⋯ v-1 v v+1 ... v+i ⋯ 2v-1 2v 2v+1 2v+2 ... 

 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

 
Theorem 1: When parties are risk-averse, the successive elimination of 

weakly dominated offers (SEWDO) ends after 𝑣 + 1 rounds 
of elimination. Profile (𝑥, 𝑦) = (𝑣, 𝑣) survives SEWDO. 

 
Proof: 
Step 1: The case of 𝑣 = 1  
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The outcome table is as follows: 
 

Table 5. The outcome table when the parties are risk-averse 

 
 
 

Club 

  Player

 0 1 2 3 4 ⋯ 

0 0 1  0 0 ⋯ 

1 1 1 1 1 1 ⋯ 

2  1 2 2 2 ⋯ 

3 0 1 2 3 3 ⋯ 
 4 0 1 2 3 4 ⋯ 
 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

 

When 𝑥 + 𝑦 = 2, 𝑥 ≠ 𝑦, 1 < 𝑔௖(𝑥, 𝑦) < max (𝑥, 𝑦). 
Note that 2 ≺௖ 0. Also note that 2 + 𝑖 ≺௖ 0, 𝑖 = 1,2, ⋯.  
Club’s offer 0 is undominated because it is the best response to player’s 

offer 3. (When 1 ≤ 𝑥 ≤ 3 , 𝑔௖(0,3) = 0 < 𝑔௖(𝑥, 3) = 𝑥  and when 𝑥 > 3 , 𝑔௖(0,3) = 0 < 𝑔௖(𝑥, 3) = 3.) 
Club’s offer 1 is undominated because it is the best response to player’s 

offer 2. (Note that 𝑔௖(1,2) = 1 < 𝑔௖(0,2) and when 𝑥 ≥ 2, 𝑔௖(1,2) = 1 <𝑔௖(𝑥, 2) = 2.) 
 
As for the player, note that min(𝑥, 𝑦) < 𝑔௣(𝑥, 𝑦) < 1  when 𝑥 + 𝑦 =2, 𝑥 ≠ 𝑦. 
We can easily show that 2 + 𝑖 ≺௣ 2 + 𝑖 + 1, 𝑖 = 1,2, ⋯ and 0 ≺௣ 2.  
And player’s offer 1 is undominated because it is the best response to the 

club’s offer of zero. 
Player’s offer 2 is undominated because it is better than 3,4,5,… against 

club’s offer 0, and it is better than 0,1 against club’s offer 2. 
After the first round of elimination, club’s offer 0 is weakly dominated by 

the offer of 1: 0 ≺௖ 1. And player’s offer 2 is weakly dominated by the offer 
of 1: 2 ≺௣ 1. 

After the second round of elimination, there remains only the offer profile (𝑥, 𝑦) = (1,1)  
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Step 2: The case of 𝑣 > 1  
The outcome table is as follows:  
 

Table 6. The outcome table when the parties are risk-averse 

 

     Player  

 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣− 1 2𝑣 2𝑣+ 1 ⋯ 

0 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣− 1  0 ⋯ 

1 1 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯  1 1 ⋯ 

⋮ ⋮ ⋮  ⋮ ⋮ 𝑣 + 1  ⋮ ⋮ ⋮  

𝑣 − 1 𝑣 − 1 𝑣 − 1 ⋯ 𝑣 − 1 𝑣  ⋯ 𝑣 − 1 𝑣 − 1 𝑣 − 1 ⋯ 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 𝑣 ⋯ 

Club 𝑣 + 1 𝑣 + 1 𝑣 + 1 ⋯  𝑣 𝑣 + 1 ⋯ 𝑣 + 1 𝑣 + 1 𝑣 + 1 ⋯ 

 ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  

 2𝑣 − 1 2𝑣− 1  ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣− 1 2𝑣− 1 2𝑣− 1 ⋯ 

 2𝑣  1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣− 1 2𝑣 2𝑣 ⋯ 

 2𝑣 + 1 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣− 1 2𝑣 2𝑣+ 1 ⋯ 

 ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  

 
We can show that 2𝑣 ≺௖ 0. Note that the following inequalities hold:  
For 𝑦 = 0, 𝑔௖(0, 𝑦) = 0 ≤ 𝑣 < 𝑔௖(2𝑣, 𝑦).  
For 0 < 𝑦 < 2𝑣,  𝑔௖(0, 𝑦) = 𝑦 = 𝑔௖(2𝑣, 𝑦).  
For 𝑦 = 2𝑣,  𝑔௖(0, 𝑦) < max(0, 𝑦) = 𝑦 = 𝑔௖(2𝑣, 𝑦).  
For 𝑦 > 2𝑣, 𝑔௖(0, 𝑦) = 0 < 2𝑣 = 𝑔௖(2𝑣, 𝑦).  
We can show that 2𝑣 + 𝑖 ≺௖ 0, 𝑖 = 1,2, ⋯ . Note that the following 

inequalities hold:   
For 𝑦 < 2𝑣,  𝑔௖(0, 𝑦) = 0 = 𝑔௖(2𝑣 + 𝑖, 𝑦).  
For 𝑦 = 2𝑣, 𝑔௖(0, 𝑦) < max(0, 𝑦) = 𝑦 = 𝑔௖(2𝑣 + 𝑖, 𝑦). 
For 2𝑣 < 𝑦 ≤ 2𝑣 + 𝑖,   𝑔௖(0, 𝑦) = 0 < 𝑦 = 𝑔௖(2𝑣 + 𝑖, 𝑦). 
For 𝑦 > 2𝑣 + 𝑖,  𝑔௖(0, 𝑦) = 0 < 2𝑣 + 𝑖 = 𝑔௖(2𝑣 + 𝑖, 𝑦). 
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We can show that 𝑣 + 𝑖 ≺௖ 𝑣 − 𝑖, 𝑖 = 1,2, ⋯ , 𝑣 − 1 . Note that the 
following inequalities hold:  

For 𝑦 < 𝑣 − 𝑖, 𝑔௖(𝑣 − 𝑖, 𝑦) = 𝑣 − 𝑖 < 𝑣 + 𝑖 = 𝑔௖(𝑣 + 𝑖, 𝑦).  
For 𝑦 = 𝑣 − 𝑖, 𝑔௖(𝑣 − 𝑖, 𝑦) = 𝑣 − 𝑖 < 𝑣 < 𝑔௖(𝑣 + 𝑖, 𝑦).  
For 𝑦 = 𝑣, 𝑔௖(𝑣 − 𝑖, 𝑦) = 𝑦 = 𝑔௖(𝑣 + 𝑖, 𝑦).  
For 𝑦 = 𝑣 + 𝑖, 𝑔௖(𝑣 − 𝑖, 𝑦) < max(𝑣 − 𝑖, 𝑦) = 𝑣 + 𝑖 = 𝑔௖(𝑣 + 𝑖, 𝑦).  
For 𝑦 > 𝑣 + 𝑖, 𝑔௖(𝑣 − 𝑖, 𝑦) = 𝑣 − 𝑖 < 𝑣 + 𝑖 = 𝑔௖(𝑣 + 𝑖, 𝑦).  
The club’s offer 𝑖 = 0 is undominated because it is the best response to 

the player’s offer 2𝑣 + 1. 
For 0 < 𝑥 ≤ 2𝑣 + 1, 𝑔௖(𝑥, 2𝑣 + 1) = 𝑥 > 0 = 𝑔௖(0,2𝑣 + 1). 
For 𝑥 > 2𝑣 + 1, 𝑔௖(𝑥, 2𝑣 + 1) = 2𝑣 + 1 > 0 = 𝑔௖(0,2𝑣 + 1). 
Club’s offer 𝑖 = 1, ⋯ , 𝑣 is undominated because it is the best response to 

player’s offer 2𝑣 + 1 − 𝑖. 
For 𝑥 < 𝑖 − 1, 𝑔௖(𝑥, 2𝑣 + 1 − 𝑖) = 2𝑣 + 1 − 𝑖 > 𝑖 = 𝑔௖(𝑖, 2𝑣 + 1 − 𝑖).  
For 𝑥 = 𝑖 − 1, 𝑔௖(𝑥, 2𝑣 + 1 − 𝑖) > 𝑣 ≥ 𝑖 = 𝑔௖(𝑖, 2𝑣 + 1 − 𝑖).  
For 𝑖 < 𝑥 ≤ 2𝑣 + 1 − 𝑖, 𝑔௖(𝑥, 2𝑣 + 1 − 𝑖) = 𝑥 > 𝑖 = 𝑔௖(𝑖, 2𝑣 + 1 − 𝑖).  
For 𝑥 > 2𝑣 + 1 − 𝑖, 𝑔௖(𝑥, 2𝑣 + 1 − 𝑖) = 2𝑣 + 1 − 𝑖 > 𝑖 = 𝑔௖(𝑖, 2𝑣 + 1 −𝑖).  
 
Now we show that 2𝑣 + 𝑖 ≺௣ 2𝑣 + 𝑖 + 1, 𝑖 = 1,2, ⋯ . 
For 𝑥 ≤ 2𝑣 + 𝑖, 𝑔௣(𝑥, 2𝑣 + 𝑖) = 𝑥 = 𝑔௣(𝑥, 2𝑣 + 𝑖 + 1).  
For 𝑥 > 2𝑣 + 𝑖, 𝑔௣(𝑥, 2𝑣 + 𝑖) = 2𝑣 + 𝑖 < 2𝑣 + 𝑖 + 1 = 𝑔௣(𝑥, 2𝑣 + 𝑖 + 1).  
We show that 𝑣 − 𝑖 ≺௣ 𝑣 + 𝑖, 𝑖 = 1,2, ⋯ , 𝑣 − 1.  
For 𝑥 < 𝑣 − 𝑖, 𝑔௣(𝑥, 𝑣 − 𝑖) = 𝑣 − 𝑖 < 𝑣 + 𝑖 = 𝑔௣(𝑥, 𝑣 + 𝑖).  
For 𝑥 = 𝑣 − 𝑖, 𝑔௣(𝑥, 𝑣 − 𝑖) = 𝑣 − 𝑖 = min(𝑥, 𝑣 + 𝑖) < 𝑔௣(𝑥, 𝑣 + 𝑖).  
For 𝑥 = 𝑣, 𝑔௣(𝑥, 𝑣 − 𝑖) = 𝑥 = 𝑔௣(𝑥, 𝑣 + 𝑖).  
For 𝑥 = 𝑣 + 𝑖, 𝑔௣(𝑥, 𝑣 − 𝑖) < 𝑣 < 𝑣 + 𝑖 = 𝑔௣(𝑥, 𝑣 + 𝑖).  
For 𝑥 > 𝑣 + 𝑖, 𝑔௣(𝑥, 𝑣 − 𝑖) = 𝑣 − 𝑖 < 𝑣 + 𝑖 = 𝑔௣(𝑥, 𝑣 + 𝑖).  
We show that 0 ≺௣ 2𝑣.  
For 𝑥 = 0, 𝑔௣(𝑥, 2𝑣) > min(𝑥, 2𝑣) = 0 = 𝑔௣(𝑥, 0).  
For 0 < 𝑥 ≤ 2𝑣 − 1, 𝑔௣(𝑥, 2𝑣) = 𝑥 = 𝑔௣(𝑥, 0).  
For 𝑥 = 2𝑣, 𝑔௣(𝑥, 2𝑣) = 2𝑣 > 𝑣 > 𝑔௣(𝑥, 0).  
For 𝑥 > 2𝑣, 𝑔௣(𝑥, 2𝑣) = 2𝑣 > 0 = 𝑔௣(𝑥, 0).  
 
Player’s offer 𝑣 + 𝑗, 𝑗 = 0,1, ⋯ , 𝑣 − 1  is undominated because it is the 

best response to club’s offer 𝑣 − 1 − 𝑗. 
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For 𝑦 ≤ 𝑣 − 1 − 𝑗, 𝑔௣(𝑣 − 1 − 𝑗, 𝑦) = 𝑣 − 1 − 𝑗 < 𝑣 + 𝑗 = 𝑔௣(𝑣 − 1 −𝑗, 𝑣 + 𝑗)  
For 𝑣 − 1 − 𝑗 < 𝑦 ≤ 𝑣 + 𝑗, 𝑔௣(𝑣 − 1 − 𝑗, 𝑦) = 𝑦 < 𝑣 + 𝑗 = 𝑔௣(𝑣 − 1 −𝑗, 𝑣 + 𝑗)  
For 𝑦 = 𝑣 + 𝑗 + 1, 𝑔௣(𝑣 − 1 − 𝑗, 𝑦) < 𝑣 ≤ 𝑣 + 𝑗 = 𝑔௣(𝑣 − 1 − 𝑗, 𝑣 + 𝑗)  
For 𝑦 > 𝑣 + 𝑗 + 1, 𝑔௣(𝑣 − 1 − 𝑗, 𝑦) = 𝑣 − 1 − 𝑗 < 𝑣 + 𝑗 = 𝑔௣(𝑣 − 1 −𝑗, 𝑣 + 𝑗)  
 
Player’s offer 2𝑣  is undominated because it is better than 2𝑣 + 𝑗, 𝑗 =1,2, … against club’s offer 0 (that is, 𝑔௣(0, 𝑦) = 0 < 𝑔௣(0,2𝑣) for 𝑦 ≥ 2𝑣 +𝑗)  and it is better than 0 against club’s offer 2𝑣  (𝑔௣(2𝑣, 0) < 𝑣 < 2𝑣 =𝑔௣(2𝑣, 2𝑣) ), and it is better than 𝑦 = 1, … ,2𝑣 − 1  against club’s offer 2𝑣 (𝑔௣(2𝑣, 𝑦) = 𝑦 < 2𝑣 = 𝑔௣(2𝑣, 2𝑣)). 
After round 𝑛 = 1 elimination, the outcome table is as follows: 
 

Table 7. The outcome table when the parties are risk-averse 

 
 
Club 

 Player

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 

0 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1  

1 𝑣 𝑣 + 1 ⋯  1 

⋮ ⋮ ⋮  ⋮ ⋮ 
𝑣 − 1 𝑣  ⋯ 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 

 
We show that 0 ≺௖ 𝑣 . 
For 𝑦  such that 𝑣 ≤ 𝑦 ≤ 2𝑣 − 1 , it holds that 𝑔௖(0, 𝑦) = 𝑦 ≥ 𝑣 =𝑔௖(𝑣, 𝑦). 
For 𝑦 = 2𝑣, it holds that 𝑔௖(0, 𝑦) > 𝑣 = 𝑔௖(𝑣, 𝑦). 
Club’s offer 𝑥 = 𝑖, 𝑖 = 1,2, ⋯ , 𝑣  is undominated. This is because 𝑥 = 𝑖 

is the best response to the player’s offer 2𝑣 + 1 − 𝑖. 
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Now we show that 2𝑣 ≺௣ 𝑣.  
For 𝑥 = 0, it holds that 𝑔௣(𝑥, 𝑣) = 𝑣 > 𝑔௣(𝑥, 2𝑣).  
For 𝑥  such that 0 < 𝑥 ≤ 𝑣 − 1,  it holds that  𝑔௣(𝑥, 𝑣) = 𝑣 >𝑔௣(𝑥, 2𝑣) = 𝑥. 
For 𝑥 = 𝑣, it holds that 𝑔௣(𝑥, 𝑣) = 𝑣 = 𝑔௣(𝑥, 2𝑣).  
We can show that player’s offer 𝑣 + 𝑖, 𝑖 = 0,1, ⋯ , 𝑣 − 1 is undominated. 

It is because 𝑦 = 𝑣 + 𝑖, 𝑖 = 0,1, ⋯ , 𝑣 − 1 is the best response to club’s offer 𝑥 = 𝑣 − 1 − 𝑖. 
After round 𝑛 ≥ 1 elimination, the outcome table is as follows: 
 

Table 8. The outcome table when the parties are risk-averse 

 
 
 
Club 

 Player

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 2𝑣 + 1 − 𝑛 

𝑛 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛  

𝑛 𝑣 𝑣 + 1 ⋯   𝑛  

⋮ ⋮ ⋮  ⋮ ⋮ 
𝑣 − 1 𝑣  ⋯ 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 

 
We show that 𝑛 − 1 ≺௖ 𝑣.  
For 𝑦  such that 𝑣 ≤ 𝑦 ≤ 2𝑣 − 𝑛,  it holds that 𝑔௖(𝑛 − 1, 𝑦) = 𝑦 ≥ 𝑣 =𝑔௖(𝑣, 𝑦). 
For 𝑦 = 2𝑣 + 1 − 𝑛, it holds that 𝑔௖(𝑛 − 1, 𝑦) > 𝑣 = 𝑔௖(𝑣, 𝑦). 
Club’s offer 𝑥 = 𝑖, 𝑖 = 𝑛, 𝑛 + 1, ⋯ , 𝑣  is undominated because it is the 

best response to player’s offer 2𝑣 + 1 − 𝑖.  
 
We show that 2𝑣 + 1 − 𝑛 ≺௣ 𝑣 . 
For 𝑥 = 𝑛 − 1, it holds that 𝑔௣(𝑥, 2𝑣 + 1 − 𝑛) < 𝑣 = 𝑔௣(𝑥, 𝑣). 
For 𝑥  such that 𝑛 ≤ 𝑥 ≤ 𝑣 − 1,  it holds that 𝑔௣(𝑥, 2𝑣 + 1 − 𝑛) = 𝑥 ≤𝑣 = 𝑔௣(𝑥, 𝑣). 
Player’s offer 𝑣 + 𝑗, 𝑗 = 0, ⋯ , 𝑣 − 𝑛 is undominated because it is the best 

response to club’s offer 𝑣 − 1 − 𝑗. 
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After round 𝑛 = 𝑣 + 1, the outcome table is as follows: And the surviving 
outcome is the offer profile (𝑥, 𝑦) = (𝑣, 𝑣).  

 
Table 9. The outcome table after 𝑛 = 𝑣 + 1 rounds when the  

parties are risk-averse  

 

 
Player 

 

 𝑣 

Club 𝑣 𝑣 

Q.E.D. 
 
In the case where the parties are extremely risk-averse (i.e., if 𝑥 + 𝑦 = 2𝑣, 

then 𝑔௖(𝑥, 𝑦) = max(𝑥, 𝑦) , 𝑔௣(𝑥, 𝑦) = 𝑚𝑖𝑛(𝑥, 𝑦) ), we can show the 
following result: (For the proof, refer to the Appendix).  

 
Theorem 2: When the parties are extremely risk-averse,  
a) If 𝑣  is odd, the profiles of the offers surviving SEWDO are the offer 

profiles (𝑥, 𝑦) = (𝑣 − 1, 𝑣), (𝑣, 𝑣). 
b) If 𝑣 is even, the profiles of offers that survive SEWDO are offer profiles (𝑥, 𝑦) = (𝑣, 𝑣), (𝑣, 𝑣 + 1). 

4 The Case Where the Parties are Risk-neutral 

In this case, both the club and the player face the same outcome table. 
Because 𝑔௖(𝑥, 𝑦) = 𝑔௣(𝑥, 𝑦) = 𝑣, when 𝑥 + 𝑦 = 2𝑣, we can let 𝑔(𝑥, 𝑦) =𝑔௖(𝑥, 𝑦) = 𝑔௣(𝑥, 𝑦)  for all 𝑥  and 𝑦  without affecting the solution of the 
FOA. 

 
Theorem 3: When the parties are risk-neutral, the profile of offers for the 

surviving SEWDO procedure is (𝑥, 𝑦) = (𝑣 − 1, 𝑣 + 1). 
 
Proof: 
For the case where 𝑣 = 1, 2, the theorem is easily verified.  



S. Shin et al. / Journal of Economic Research 29 (2024) 77-112  91 

For the case where 𝑣 ≥ 3, we show that the following holds in a manner 
similar to the proof of Theorem 1: 

1. 0 ≻௖ 2𝑣 − 1 + 𝑖, 𝑖 = 0,1,2, ⋯ 
2. 𝑣 − 1 ≻௖ 𝑣 
3. 𝑣 − 𝑖 − 1 ≻௖ 𝑣 + 𝑖, 𝑖 = 1,2, ⋯ , 𝑣 − 1 
4. Club’s offer 𝑖, 𝑖 = 0, 1, 2, ⋯ 𝑣 − 1  is undominated because it is the 

best response to player’s offer 2𝑣 + 1 − 𝑖. 
Thus, the club’s offer 𝑖, 𝑖 = 0, 1, … , 𝑣 − 1  survives the first round of 

eliminating weakly dominated offers. 
For player, similar results hold. 
1. 2𝑣 + 𝑖 ≺௣ 2𝑣 + 𝑖 + 1, 𝑖 = 1,2, ⋯  
2. 2𝑣 − 𝑖 ≻௣ 𝑖, 𝑖 = 0,1, ⋯ 𝑣 − 1 
3. 𝑣 + 1 ≻௣ 𝑣  
4. Player’s offer 𝑣 + 𝑖, 𝑖 = 1,2, ⋯ , 𝑣 − 1  is undominated because it is 

the best response to club’s offer 𝑣 − 1 − 𝑖. 
5. Player’s offer 2𝑣  is undominated because it is better than 2𝑣 +𝑖, 𝑖 = 1,2, ⋯ for club’s offer 0, and better than 𝑖, 𝑖 = 0, ⋯ ,2𝑣 − 1 for 

club’s offer 2𝑣. 
 
Thus, the player’s offer 𝑖, 𝑖 = 𝑣 + 1, … , 2𝑣  survives the first round of 

eliminating weakly dominated offers. 
After the first round of elimination, we obtain the following outcome table: 
 

Table 10. The outcome table after the first round of  
elimination when both parties are risk-neutral 

Club 

 Player 

 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 

0 𝑣 + 1 ⋯ 2𝑣 − 1 𝑣 

1 𝑣 + 1 ⋯ 𝑣 1 

⋮ ⋮  ⋮ ⋮ 
𝑣 − 1 𝑣 ⋯ 𝑣 − 1 𝑣 − 1 
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For the club, the following holds in the second round of elimination: 
1. 0 ≺௖ 𝑣 − 1  
2. 𝑖, 𝑖 = 1, ⋯ , 𝑣 − 1  is undominated because it is the best response to 

player’s offer 2𝑣 + 1 − 𝑖. 
For the player, the following holds in the second round of elimination: 
1. 2𝑣 ≺௣ 𝑣 + 1  
2. 𝑣 + 𝑖, 𝑖 = 1, ⋯ , 𝑣 − 1 is undominated because it is the best response 

to club’s offer 𝑣 − 1 − 𝑖. 
 
After 𝑛, 𝑛 = 1,2, ⋯ 𝑣  rounds of elimination, the outcome table is as 

follows:  
 

Table 11. The outcome table after the 𝑛, 𝑛 = 1,2, ⋯ 𝑣 round of  
elimination when both parties are risk-neutral 

 
 
 
Club 

 Player 

 𝑣 + 1 ⋯ 2𝑣 − 𝑛 2𝑣 − 𝑛 + 1 

𝑛 − 1 𝑣 + 1 ⋯ 2𝑣 − 𝑛 𝑣 

𝑛 𝑣 + 1 ⋯ 𝑣 𝑛 

⋮ ⋮  ⋮ ⋮ 
𝑣 − 1 𝑣 ⋯ 𝑣 − 1 𝑣 − 1 

 
For club, the following holds: 
1. 𝑛 − 1 ≺௖ 𝑣 − 1  
2. Club’s offer 𝑖, 𝑖 = 𝑛, ⋯ 𝑣 − 1 is undominated. This is because it is the 

best response to player’s offer 2𝑣 + 1 − 𝑖. 
For player, the following holds: 
1. 2𝑣 − 𝑛 + 1 ≺௣ 𝑣 + 1  
2. Player’s offer 𝑣 + 𝑖, 𝑖 = 1, ⋯ , 𝑣 − 𝑛 is undominated. This is because 

this is the best response to the club’s offer 𝑣 − 1 − 𝑖. 
After 𝑣 rounds of elimination, only the offer profile (𝑥, 𝑦) = (𝑣 − 1, 𝑣 + 1) 

remains. In other words, it survived the SEWDO.      Q.E.D. 
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5 The Case Where the Parties Are Risk-loving 

When 𝑥 + 𝑦 = 2𝑣 𝑎𝑛𝑑 𝑥 ≠ 𝑦 , it holds that min(𝑥, 𝑦) < 𝑔௖(𝑥, 𝑦) < 𝑣 . 
For clubs, the following dominance relationship holds:  

1. 𝑣 + 𝑖 ≺௖ 𝑣 − 𝑖, 𝑖 = 1,2, ⋯ , 𝑣 − 1  
2. 2𝑣 ≺௖ 0 
3. 2𝑣 + 𝑖 ≺௖ 0, 𝑖 = 1,2, ⋯ 
4. 𝑣 ≺௖ 𝑣 − 1 
5. The club’s offer 𝑖 = 0 is undominated because it is the best response 

to the player’s offer 2𝑣 + 1. 
Club’s offer 𝑖, 𝑖 = 1,2, ⋯ , 𝑣 − 2, is undominated because it is better 
than 𝑖 + 1, 𝑖 + 2, ⋯  for player’s offer 2𝑣 + 1 − 𝑖  and it is better 
than 0,1, ⋯ 𝑖 − 1 for player’s offer 2𝑣 − 𝑖. 
The club’s offer 𝑖 = 𝑣 − 1  is undominated because it is the best 
response to the player’s offer. 𝑣 + 1. 

 
Table 12. The outcome table when both parties are risk-loving 

 
 
 
 
 
Club 

    Player 

 0 ⋯ 𝑣 𝑣 + 1 𝑣 + 2 ⋯ 2𝑣 − 1 2𝑣 2𝑣 + 1 ⋯ 

0  ⋯ 𝑣 𝑣 + 1 𝑣 + 2 ⋯ 2𝑣 − 1  0 ⋯ 

1  ⋯ 𝑣 𝑣 + 1 𝑣 + 2 ⋯  1 1 ⋯ ⋮   ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  𝑣 − 2    𝑣 + 1   𝑣 − 2 𝑣 − 2 𝑣 − 2  𝑣 − 1  ⋯ 𝑣   𝑣 − 1 ⋯ 𝑣 − 1 𝑣 − 1 𝑣 − 1 ⋯ 
  𝑣  ⋯ 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 𝑣 ⋯ 
 𝑣 + 1  ⋯ 𝑣 𝑣 + 1 𝑣 + 1 ⋯ 𝑣 + 1 𝑣 + 1 𝑣 + 1 ⋯ 
 ⋮   ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  
 2𝑣 − 1  ⋯ 𝑣 𝑣 + 1 𝑣 + 2 ⋯ 2𝑣 − 1 2𝑣 − 1 2𝑣 − 1 ⋯ 
 2𝑣  ⋯ 𝑣 𝑣 + 1 𝑣 + 2 ⋯ 2𝑣 − 1 2𝑣 2𝑣 ⋯ 
 2𝑣 + 1  ⋯ 𝑣 𝑣 + 1 𝑣 + 2 ⋯ 2𝑣 − 1 2𝑣 2𝑣 + 1 ⋯ 
 ⋮   ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  

 
For player, the following dominance relation holds: Note that, when 𝑥 +𝑦 = 2𝑣 𝑎𝑛𝑑 𝑥 ≠ 𝑦, it holds that 𝑣 < 𝑔௣(𝑥, 𝑦) < max (𝑥, 𝑦). 
 
 



94  Final-offer arbitration and successive elimination of weakly dominated offers 

1. 𝑣 + 𝑖 ≻௣ 𝑣 − 𝑖, 𝑖 = 1, ⋯ , 𝑣 − 1 
2. 2𝑣 ≻௣ 0 
3. 𝑣 + 1 ≻௣ 𝑣 
4. 2𝑣 + 𝑖 + 1 ≻௣ 2𝑣 + 𝑖, 𝑖 = 1,2, ⋯ 
5. The player’s offer 𝑣 + 1  is undominated because it is the best 

response to the club’s offer 𝑣 − 1. 
Player’s offer 𝑣 + 𝑖, 𝑖 = 2, ⋯ , 𝑣 − 1  is undominated because it is 
better than 𝑦 = 0,1, ⋯ , 𝑣 + 𝑖 − 1 for club’s offer 𝑣 − 1 − 𝑖 (𝑔௣(𝑣 −1 − 𝑖, 𝑦) < 𝑔௣(𝑣 − 1 − 𝑖, 𝑣 + 𝑖) ) and it is better than 𝑦 > 𝑣 + 𝑖  for 
club’s offer 𝑣 − 𝑖 (𝑔௣(𝑣 − 𝑖, 𝑦) < 𝑔௣(𝑣 − 𝑖, 𝑣 + 𝑖)) 

6. Player’s offer 2𝑣 is undominated because it is better than 2𝑣 + 𝑖, 𝑖 =1,2, ⋯  for club’s offer 0 , and it is better than 𝑖, 𝑖 = 0, ⋯ ,2𝑣 − 1  for 
club’s offer 2𝑣 

 
After first round of elimination, the outcome table is as follows: 
 

Table 13. The outcome table after the first round of elimination  
when both parties are risk-loving (𝑣 ≥ 3) 

 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 

0 𝑣 + 1 ⋯ 2𝑣 − 1  

1 𝑣 + 1 ⋯  1 ⋮ ⋮  ⋮ ⋮ 𝑣 − 2 𝑣 + 1 ⋯ 𝑣 − 2 𝑣 − 2 𝑣 − 1  ⋯ 𝑣 − 1 𝑣 − 1 

 
We say that the club is weakly risk-loving if min(𝑥, 𝑦) + 1 ≤ 𝑔௖(𝑥, 𝑦) <𝑣  where 𝑥 + 𝑦 = 2𝑣, min(𝑥, 𝑦) ≠ 𝑣 − 1, 𝑣 . Players are weakly risk-loving 

if 𝑣 < 𝑔௣(𝑥, 𝑦) ≤ max (𝑥, 𝑦) − 1  where 𝑥 + 𝑦 = 2𝑣, max(𝑥, 𝑦) ≠ 𝑣 + 1, 𝑣 . 
In the next theorem, we show that the unique surviving offer profile is (𝑥, 𝑦) = (𝑣 − 1, 𝑣 + 1) when they are weakly risk-loving.  

 
Theorem 4: When the parties are weakly risk-loving, the unique offer 

profile of the surviving SEWDO is (𝑥, 𝑦) = (𝑣 − 1, 𝑣 + 1). 
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Proof:   
When 𝑣 = 1, 2, the theorem is easily verified. Thus suppose 𝑣 ≥ 3. 
In the second round of elimination, we can show that 0 ≺௖ 1.  
And the club’s offer 𝑖, 𝑖 = 1, ⋯ , 𝑣 − 1 is undominated by the same reason 

as in the first round of elimination. 
We can show that 2𝑣 ≺௣ 2𝑣 − 1.  
The player’s offer 𝑣 + 𝑖, 𝑖 = 1, ⋯ , 𝑣 − 1  is undominated by the same 

reason as in the first round of elimination. 
After the second round of elimination, the outcome table is as follows: 
 

Table 14. The outcome table after second round of elimination  
when both parties are risk-loving (𝑣 ≥ 3) 

 𝑣 + 1 𝑣 + 2 ⋯ 2𝑣 − 2 2𝑣 − 1 

1 𝑣 + 1 𝑣 + 2 ⋯ 2𝑣 − 2  

2 𝑣 + 1 𝑣 + 2 ⋯  2 

⋮ ⋮ ⋮  ⋮ ⋮ 
𝑣 − 2 𝑣 + 1  ⋯ 𝑣 − 2 𝑣 − 2 

𝑣 − 1  𝑣 − 1 ⋯ 𝑣 − 1 𝑣 − 1 

 
In the third round, we can show that 1 ≺௖ 2.  
Club’s offer 𝑖, 𝑖 = 2, ⋯ , 𝑣 − 1 is undominated. 
We can show that 2𝑣−1 ≺௣ 2𝑣 − 2  
Player’s offer 𝑣 + 𝑖, 𝑖 = 1, ⋯ , 𝑣 − 2 is undominated. 
 
After kth round of elimination, 1 ≤ 𝑘 ≤ 𝑣 − 1 , the outcome table is as 

follows: 
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Table 15. The outcome table after kth round of elimination (𝑣 ≥ 3) 

 𝑣 + 1 ⋯ 2𝑣 ⋯ 𝑘 + 1 

𝑘 − 1 𝑣 + 1 ⋯ 𝑘 − 1 ⋯ 𝑘 + 1 

⋮ ⋮  ⋮  ⋮ 
𝑣 − 1  ⋯ 𝑣 − 1 ⋯ 𝑣 − 1 

 
After 𝑣 − 1th round of elimination, the outcome table is as follows: 
 

Table 16. The outcome table after 𝑣 − 1th round of elimination (𝑣 ≥ 3) 

 𝑣 + 1 𝑣 + 2 

𝑣 − 2 𝑣 + 1  

𝑣 − 1  𝑣 − 1 

 
We can show that 𝑣 − 2 ≺௖ 𝑣 − 1 and 𝑣 + 2 ≺௣ 𝑣 + 1.  
 
After 𝑣th round of elimination, the outcome table is as follows: 
 

Table 17. The outcome table after 𝑣th round of elimination Q.E.D. 

 𝑣 + 1 

𝑣 − 1  

 
We say that the club and player are strongly risk-loving, if they are risk-

loving but not weakly risk-loving. If the parties are strongly risk-loving, then 
there is some integer 𝑘(≠ 𝑣, 𝑣 − 1)  such that 𝑔௖(𝑘, 2𝑣 − 𝑘) < 𝑘 + 1  and 𝑔௣(𝑘, 2𝑣 − 𝑘) > 2𝑣 − 𝑘 − 1, 0 ≤ 𝑘 ≤ 𝑣 − 2 . Let 𝑚  be the smallest one 
among such numbers (𝑘(≠ 𝑣, 𝑣 − 1)s). 
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Theorem 5: When the parties are strongly risk-loving, then all the offers 𝑚, ⋯ , 𝑣 − 1 (𝑣 ≥ 2)  by the club and all the offers 𝑣 +1, ⋯ ,2𝑣 − 𝑚  by the player are undominated where 𝑚  is 
defined as above. 

 
Proof:  
After the first round of elimination, club offers 0, … , 𝑣 − 1  and player 

offers 𝑣 + 1, … ,2𝑣 survive. If 𝑚 = 0, the outcome table is as shown in Table 
18. If 𝑚 ≥ 1,  in each round of elimination from round 2 to 𝑚 + 1 round, 
the same logic applies as in Theorem 4. Thus, club offers, 0, … , 𝑚 − 1  are 
eliminated one by one, and player offers, 2𝑣, 2𝑣 − 1, … ,2𝑣 − 𝑚 + 1  are 
eliminated one by one. After 𝑚 + 1 round of elimination, the outcome table 
is as follows: 

 
Table 18. The outcome table after 𝑚 + 1 round of elimination 

 𝑣 + 1 𝑣 + 2 ⋯ 2𝑣 − 𝑚 − 1 2𝑣 − 𝑚 

m 𝑣 + 1 𝑣 + 2 ⋯ 2𝑣 − 𝑚 − 1  

𝑚 + 1 𝑣 + 1 𝑣 + 2 ⋯  𝑚 + 1 

⋮ ⋮ ⋮  ⋮ ⋮ 
𝑣 − 2 𝑣 + 1  ⋯ 𝑣 − 2 𝑣 − 2 

𝑣 − 1  𝑣 − 1 ⋯ 𝑣 − 1 𝑣 − 1 

 
In the table above, the club’s offer 𝑚 is undominated because it is the best 

response to the player’s offer 2𝑣 − 𝑚. The club’s offer 𝑚 + 𝑖, 𝑖 = 1, … , 𝑣 −𝑚 − 2 is undominated because it is better than 𝑚, … , 𝑚 + 𝑖 − 1 for player’s 
offer 2𝑣 − 𝑚 − 𝑖  and better than 𝑚 + 𝑖 + 1, … , 𝑣 − 1  for player’s offer 2𝑣 − 𝑚 − 𝑖 + 1. The club’s offer 𝑣 − 1 is undominated because it is the best 
response to the player’s offer 𝑣 + 1. 

The player’s offer 2𝑣 − 𝑚 is undominated because it is the best response 
to the club’s offer 𝑚. The player’s offer 2𝑣 − 𝑚 − 𝑖, 𝑖 = 1, … , 𝑣 − 𝑚 − 2 is 
undominated because it is better than 𝑣 + 1, … ,2𝑣 − 𝑚 − 𝑖 − 1  for club’s 



98  Final-offer arbitration and successive elimination of weakly dominated offers 

offer 𝑚 + 𝑖 − 1 and better than 2𝑣 − 𝑚 − 𝑖 + 1, … ,2𝑣 − 𝑚 for club’s offer 𝑚 + 𝑖 . The player’s offer 𝑣 + 1  is undominated because it is the best 
response to the club’s offer 𝑣 − 1. 

Q.E.D. 
 
This theorem shows that when the parties are strongly risk-loving, the 

surviving offers from the SEWDO are a block of undominated offers. 
In the case where the parties are extremely risk-loving (that is, 𝑔௖(𝑥, 𝑦) =min(𝑥, 𝑦),  𝑔௣(𝑥, 𝑦) = max(𝑥, 𝑦)  when 𝑥 + 𝑦 = 2𝑣 ), note that the club’s 

offer 𝑣 − 𝑖, 𝑖 = 1, ⋯ 𝑣 is undominated because it is the best response to the 
player’s offer 𝑣 + 𝑖 . The player’s offer 𝑣 + 𝑖, 𝑖 = 1, ⋯ , 𝑣  is undominated 
because it is the best response to club’s offer 𝑣 − 𝑖. Thus, the surviving offers 
from the SEWDO are a block of offers ranging from 0 to 𝑣 − 1 for the club 
and the surviving offers are a block of offers ranging from 𝑣 + 1 to 2𝑣 for 
player, in accordance with the theorem 5 where 𝑚 = 0.  

 
Table 19. Surviving offers from SEWDO under various attitudes  

toward risk 

Attitude Toward Risk Surviving Offers From the SEWDO 

Extremely Risk-Averse
𝑣 is odd: (𝑣, 𝑣), (𝑣 − 1, 𝑣) 𝑣 is even: (𝑣, 𝑣), (𝑣, 𝑣 + 1) 

Risk-Averse (𝑣, 𝑣)
Risk-Neutral (𝑣 − 1, 𝑣 + 1)

Weakly Risk-Loving (𝑣 − 1, 𝑣 + 1)
Strongly Risk-Loving 

Club: m, ⋯ , 𝑣 − 1 
Player: 𝑣 + 1, 𝑣 + 2, ⋯ ,2𝑣 − 𝑚 

6 Concluding Remarks 

We analyze the FOA when parties know the evaluation of the proper 
salary by the arbitrator. We use a discrete model in which parties offer a 
discrete number as a salary offer. We use the successive elimination of weakly 
dominated offers as the solution concept. The solution outcome varies 
according to the parties’ attitudes toward risk. When the parties are risk-
averse, the pair of offers that survives the SEWDO is (𝑥, 𝑦) = (𝑣, 𝑣). When 
the parties are risk-neutral, the pair of offers surviving the SEWDO is 
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offers that survives the SEWDO is (𝑥, 𝑦) = (𝑣 − 1, 𝑣 + 1). When the parties 
are strongly risk-loving, there remains a block of offers that survive the 
SEWDO for clubs and players.  

In the discrete model, the outcome of FOA changes as attitudes toward 
risk vary. The change is subtle. This change may be more significant when 
the grid size is large. In the continuous model, where the grid size approaches 
zero, both the surviving offer profiles and Nash equilibria coincide with (𝑥, 𝑦) = (𝑣, 𝑣) when the parties are risk-averse or risk-neutral.  

Note also that if we change the tie-breaking rule such that the average 
offers are chosen as the final salary when there is a tie, then the outcome is 
not random and risk attitude becomes irrelevant in determining the 
outcome. For instance, suppose that both the arbitrator and the parties 
submit sealed envelopes containing their salary offer, and the final salary is 
the average offer of the two parties when the two offers are equally distant 
from the evaluation of the arbitrator. In this modified FOA game, the 
outcome is the same as that in the unmodified FOA, in which the parties are 
risk-neutral. 

Our paper contributes to the literature in three ways. First, we set up a 
discrete model while the existing literature uses continuous models. Discrete 
model is of reality while continuous models are approximations to the 
reality in the FOA. For instance, club or player does not offer the salary √2 
dollars in the real world. Under the discrete model, we can obtain the 
divergent outcome in FOA in the context of perfect information on the 
arbitrator’s evaluation. In the context of imperfect information, the 
divergent outcome is obtained as a general result (Brams and Merill III 
(1983)). Thus, the discrete model is better in that it shows the divergent 
outcome consistently under both the perfect information and the imperfect 
information.  

Second, the Nash equilibrium implicitly presupposes the existence of a 
coordination mechanism such as pre-play communication. This supposition 
is necessary for the self-confirming expectation property of Nash 
equilibrium. The supposition of pre-play communication is why the Nash 
equilibrium is often interpreted as a self-enforcing agreement. Thus, if we do 
not suppose the existence of a coordination mechanism, Nash equilibrium 
may not be convincing. For instance, in the chicken game where each player 
may choose evasion or confrontation, it is natural not to suppose the pre-
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play communication. In this case, both players may choose confrontations. 
The successive elimination of weakly dominated strategies does not 
presuppose the existence of coordination mechanisms. Thus, the solution 
outcome obtained using the solution concept SEWDO is more robust than 
that obtained by the Nash equilibrium.  

Third, our analysis includes the case where the parties are risk-loving 
while the existing literature deals only with the cases where the parties are 
risk-averse or risk-neutral. 
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Appendix: The proof of theorem 2 
 
Theorem 2: When the parties are extremely risk-averse, 
(a) If 𝑣  is odd, offer profiles (𝑥, 𝑦) = (𝑣 − 1, 𝑣), (𝑣, 𝑣)  survive the 

SEWDO procedure. 
(b) If 𝑣 is even, then the offer profiles (𝑥, 𝑦) = (𝑣, 𝑣), (𝑣, 𝑣 + 1) survive 

the SEWDO procedure. 
 
Proof:  
Case 1: 𝑣 = 1 
The outcome table is as follows: 
 

Table A1. The outcome table when the parties are  
extremely risk-averse (𝑣 = 1) 

 
 
 

Club 

 Player

 0 1 2 3 ⋯ 

0 0 1 0 0 ⋯ 

1 1 1 1 1 ⋯ 

2 0 1 2 2 ⋯ 

3 0 1 2 3 ⋯ 

 ⋮ ⋮ ⋮ ⋮ ⋮  

 
The following dominance relations hold for club: 
Club’s offers 2,3,4 ⋯ are weakly dominated by offer 0: 2,3,4 ⋯ ≺௖ 0  
Club’s offers 0,1 are undominated because 0 is the best response to player’s 
offer 3, and 1 is the best response to player’s offer 2. 
 
The following dominance relation holds for player: 2 ≺௣ 3 ≺௣ 4 ≺௣ ⋯  0 ≺௣ 1  
Player’s offer 1 is undominated because 1 is the best response to the club’s 
offer of 0.  
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Case 2: 𝑣 = 2 
The outcome table is as follows: 
 

Table A2. The outcome table of club when the parties are extremely  
risk-averse (𝑣 = 2) 

 
 
 
 
 

Club 

   Player

 0 1 2 3 4 5 6 ⋯ 

0 0 1 2 3 4 0 0 ⋯ 

1 1 1 2 3 1 1 1 ⋯ 

2 2 2 2 2 2 2 2 ⋯ 

3 3 3 2 3 3 3 3 ⋯ 

 4 4 1 2 3 4 4 4 ⋯ 

 5 0 1 2 3 4 5 5 ⋯ 

 6 0 1 2 3 4 5 6 ⋯ 

 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

 
The following dominance relation holds for club: 4,5,6 ⋯ ≺௖ 0  3 ≺௖ 1  
Club’s offers 0,1,2 are undominated because club offer 0 is the best 
response to player offer 5, 1 is the best response to player offer 4, and 2 is 
the best response to player offer 3. 
The outcome table facing player is as follows: 
 

Table A3. The outcome table of player when the parties are  
extremely risk-averse 

 
 
 
 
 

Club 

   Player

 0 1 2 3 4 5 6 ⋯ 

0 0 1 2 3 0 0 0 ⋯ 

1 1 1 2 1 1 1 1 ⋯ 

2 2 2 2 2 2 2 2 ⋯ 
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3 3 1 2 3 3 3 3 ⋯ 

 4 0 1 2 3 4 4 4 ⋯ 

 5 0 1 2 3 4 5 5 ⋯ 

 6 0 1 2 3 4 5 6 ⋯ 

 ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮  

 
The following dominance relation holds for player: 4 ≺௣ 5 ≺௣ 6 ≺௣ ⋯  0 ≺௣ 3  1 ≺௣ 2  
Player’s offers 2,3 are undominated because player’s offer 2 is the best 
response to club’s offer 1 and player’s offer 3 is the best response to club’s 
offer 0. 
 
After first round of elimination, the outcome table facing club is as follows: 
 

Table A4. The outcome table of club after first round of elimination  
when the parties are extremely risk-averse 

Club 

Player 

 2 3 

0 2 3 

1 2 3 

2 2 2 

 
The following dominance relation holds for club: 0,1 ≺௖ 2  
A club’s offer 2 is undominated because it is the best response to player’s 
offer 3. 
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The outcome table facing player is as follows: 
 

Table A5. The outcome table of player after first round of elimination when 
the parties are extremely risk-averse 

Club 

Player 

 2 3 

0 2 3 

1 2 1 

2 2 2 

 
The following dominance relation holds for player: 
Player’s offers 2,3 are undominated because player’s offer 2 is the best 

response to club’s offer 1 and player’s offer 3 is the best response to club’s 
offer 0. 

 
After the second round of elimination, the outcome table for both clubs 

and players is as follows: 
 

Table A6. The outcome table of both club and player after second round of 
elimination when the parties are extremely risk-averse 

Club 

Player 

 2 3 

2 2 2 

 
In general, let 𝑣 = 2𝑘 − 1  or 2𝑘 , where 𝑘 ≥ 2  and 𝑛 = 2𝑙 − 1, 𝑙 =1,2, ⋯ , 𝑘.  
Now let 𝑛 = 1.  
In the first round ( 𝑛 = 1) of elimination, the outcome table for the club 

is as follows: 
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Table A7. The outcome table of club when the parties are  
extremely risk-averse 

 
 
 
 
 
 
 
 
Club 

     Player  

 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 2𝑣 + 1 ⋯ 

0 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 0 ⋯ 

1 1 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 1 1 ⋯ ⋮ ⋮ ⋮  ⋮ ⋮ 𝑣 + 1  ⋮ ⋮ ⋮  𝑣 − 1 𝑣 − 1 𝑣 − 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 𝑣 − 1 𝑣 − 1 𝑣 − 1 ⋯ 
 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 𝑣 ⋯ 
 𝑣 + 1 𝑣 + 1 𝑣 + 1 ⋯ 𝑣 + 1 𝑣 𝑣 + 1 ⋯ 𝑣 + 1 𝑣 + 1 𝑣 + 1 ⋯ 
 ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  
 2𝑣 − 1 2𝑣 − 1 2𝑣 − 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 − 1 2𝑣 − 1 ⋯ 
 2𝑣 2𝑣 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 2𝑣 ⋯ 
 2𝑣 + 1 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 2𝑣 + 1 ⋯ 
 ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  

 
The following dominance relation holds for club: 
1. 2𝑣 + 1,2𝑣 + 2 ⋯ ≺௖ 0  2𝑣 + 𝑖 ≺௖ 0, 𝑖 = 1,2, ⋯ 
2. 𝑣 + 𝑖 ≺௖ 𝑣 − 𝑖, 𝑖 = 1,2, ⋯ , 𝑣 
3. 𝑖, 𝑖 = 0, ⋯ , 𝑣 is undominated since it is the best response to player’s 

offers 2𝑣 + 1 − 𝑖. 
 
The outcome table facing player is as follows: 
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Table A8. The outcome table of player when the  
parties are extremely risk-averse 

 
 
 
 
 
 
 
 
 
 
Club 

      Player

 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 2𝑣 + 1 ⋯ 

0 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 0 0 ⋯ 

1 1 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 1 1 1 ⋯ 

⋮ ⋮ ⋮  ⋮ ⋮ 𝑣 + 1  ⋮ ⋮ ⋮  

𝑣 − 1 𝑣 − 1 𝑣 − 1 ⋯ 𝑣 − 1 𝑣 𝑣 − 1 ⋯ 𝑣 − 1 𝑣 − 1 𝑣 − 1 ⋯ 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 𝑣 ⋯ 

 𝑣 + 1 𝑣 + 1 𝑣 + 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 𝑣 + 1 𝑣 + 1 𝑣 + 1 ⋯ 

 ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  

 2𝑣 − 1 2𝑣 − 1 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 − 1 2𝑣 − 1 ⋯ 

 2𝑣 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 2𝑣 ⋯ 

 2𝑣 + 1 0 1 ⋯ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 1 2𝑣 2𝑣 + 1 ⋯ 

 ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  ⋮ ⋮ ⋮  

 

The following dominance relation holds for player: 
1. 2𝑣 ≺௣ 2𝑣 + 1 ≺௣ 2𝑣 + 2 ≺௣ ⋯   2𝑣 + 𝑖 ≺௣ 2𝑣 + 𝑖 + 1 , 𝑖 =0,1,2, ⋯ 
2. 𝑣 + 𝑖 − 1 ≻௣ 𝑣 − 𝑖, 𝑖 = 1,2, ⋯ , 𝑣 
3. 𝑣 + 𝑖 , 𝑖 = 0,1,2, ⋯ , 𝑣 − 1  is undominated because it is the best 

response to club’s offer 𝑣 − 1 − 𝑖. 
 
The outcome table facing club is as follows: 
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Table A9. The outcome table of club after first round of  
elimination when the parties are extremely risk-averse 

Club 

 Player 

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 2𝑣 − 1 

0 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 2𝑣 − 1 

1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 2𝑣 − 1 

2 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 2 ⋮ ⋮ ⋮  ⋮ ⋮ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 

 
The following dominance relation holds for club: 
1. 0,1 ≺௖ 𝑣  
2. 𝑖 , 𝑖 = 2, ⋯ , 𝑣  is undominated because the best response to player’s 

offers 2𝑣 + 1 − 𝑖.  
 
The outcome table facing player is as follows: 
 

Table A10. The outcome table of player after first round of  
elimination when the parties are extremely risk-averse 

Club 

 Player

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 2𝑣 − 1 

0 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 2𝑣 − 1  

1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 1 

2 𝑣 𝑣 + 1 ⋯ 2 2 ⋮ ⋮ ⋮  ⋮ ⋮ 𝑣 − 1 𝑣 𝑣 − 1 ⋯ 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 
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The following dominance relation holds for player: 
1. 𝑣 + 𝑗, 𝑗 = 0, ⋯ , 𝑣 − 1 is undominated because it is the best response 

to club’s offer 𝑣 − 1 − 𝑗. 
 
After the second round (𝑛 = 2) of elimination, the outcome table for the 

club is as follows: 
 

Table A11. The outcome table of club after second round of  
elimination when the parties are extremely risk-averse 

Club 

 Player 

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 2𝑣 − 1 

2 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 2 

3 𝑣 𝑣 + 1 ⋯ 3 3 ⋮ ⋮ ⋮  ⋮ ⋮ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 

 
The following dominance relation holds for club: 
1. 𝑖 , 𝑖 = 2,3, ⋯ , 𝑣  is undominated because it is the best response to 

player’s offer 2𝑣 + 1 − 𝑖. 
 
The outcome table facing player is as follows: 
 

Table A12. The outcome table of player after second round of  
elimination when the parties are extremely risk-averse 

Club 

 Player 

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 2 2𝑣 − 1 

2 𝑣 𝑣 + 1 ⋯ 2 2 

3 𝑣 𝑣 + 1 ⋯ 3 3 
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⋮ ⋮ ⋮  ⋮ ⋮ 𝑣 − 1 𝑣 𝑣 − 1 ⋯ 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 

 
The following dominance relation holds for player: 
1. 2𝑣 − 1 ≺௣ 𝑣  
2. 2𝑣 − 2 ≺௣ 𝑣  
3. 𝑗 , 𝑗 = 𝑣, ⋯ ,2𝑣 − 3  where 𝑣 ≥ 3 (𝑣 < 2𝑣 − 3)  is undominated 

because it is the best response to club’s offer 2𝑣 − 1 − 𝑗. 
 
After 𝑛 = 2𝑙 − 1, 𝑙 = 1,2, ⋯ , 𝑘  round elimination, the outcome table 

facing club is as follows: 
 

Table A13. The outcome table of club after 𝑛 = 2𝑙 − 1 round of 
elimination when the parties are extremely risk-averse 

Club 

  
Player 

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 2𝑣 − 𝑛 𝑛 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 2𝑣 − 𝑛 𝑛 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 2𝑣 − 𝑛 𝑛 + 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 𝑛 + 1  ⋮ ⋮ ⋮  ⋮ ⋮ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣  ⋯ 𝑣 𝑣 

 
The following dominance relation holds for club: 
1. 𝑛 − 1, 𝑛 ≺௖ 𝑣 because 𝑔௖(𝑛 − 1, 𝑦) = 𝑔௖(𝑛, 𝑦) = 𝑦 > 𝑣 = 𝑔௖(𝑣, 𝑦)  
2. The circled outcomes are located just under the cells, along which 𝑥 +𝑦 = 2𝑣  are the smallest in their columns. That is, club’s offer 𝑖, 𝑖 =𝑛 + 1, ⋯ , 𝑣  is the best response to player’s offer 2𝑣 + 1 − 𝑖 . Thus, 

club’s offer 𝑖, 𝑖 = 𝑛 + 1, ⋯ , 𝑣 are undominated. 
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The outcome table of player is as follows: 
 

Table A14. The outcome table of player after 𝑛 = 2𝑙 − 1 round of 
elimination when the parties are extremely risk-averse 

Club 

  
Player 

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 2𝑣 − 𝑛 𝑛 − 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 2𝑣 − 𝑛  𝑛 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1  𝑛 𝑛 + 1 𝑣 𝑣 + 1 ⋯ 𝑛 + 1 𝑛 + 1 ⋮ ⋮ ⋮  ⋮ ⋮ 𝑣 − 1 𝑣 𝑣 − 1 ⋯ 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 

 
The following dominance relation holds for player: 
1. 𝑣, 𝑣 + 1, ⋯ , 2𝑣 − 𝑛 are undominated because 𝑣 + 𝑖, 𝑖 = 0, ⋯ , 𝑣 − 𝑛 

is the best response to club’s offer 𝑣 − 1 − 𝑖. 
 
After 𝑛 = 2𝑙, 𝑙 = 1,2, ⋯ , 𝑘 round elimination, the outcome table facing 

club is as follows: 
 

Table A15. The outcome table of club after 𝑛 = 2𝑙 round of  
elimination when the parties are extremely risk-averse 

Club 

   
Player 

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 2𝑣 − 𝑛 2𝑣 − 𝑛 + 1 𝑛 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 2𝑣 − 𝑛 𝑛  𝑛 + 1 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 𝑛 + 1 𝑛 + 1 ⋮ ⋮ ⋮  ⋮ ⋮ ⋮ 𝑣 − 1 𝑣 𝑣 + 1 ⋯ 𝑣 − 1 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 𝑣 



S. Shin et al. / Journal of Economic Research 29 (2024) 77-112  111 

Club’s offer 𝑖 , 𝑖 = 𝑛, 𝑛 + 1, ⋯ , 𝑣  is undominated because it is the best 
response to player’s offer 2𝑣 + 1 − 𝑖. 

 
The outcome table facing player is as follows: 
 

Table A16. The outcome table of player after 𝑛 = 2𝑙 round of  
elimination when the parties are extremely risk-averse 

Club 

  Player

 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 2𝑣 − 𝑛 2𝑣 − 𝑛 + 1 𝑛 𝑣 𝑣 + 1 ⋯ 2𝑣 − 𝑛 − 1 𝑛 𝑛 𝑛 + 1 𝑣 𝑣 + 1 ⋯ 𝑛 + 1 𝑛 + 1 𝑛 + 1 ⋮ ⋮ ⋮  ⋮ ⋮ ⋮ 𝑣 − 1 𝑣 𝑣 − 1 ⋯ 𝑣 − 1 𝑣 − 1 𝑣 − 1 

 𝑣 𝑣 𝑣 ⋯ 𝑣 𝑣 𝑣 

 
Player’s offers 2𝑣 − 𝑛 + 1, 2𝑣 − 𝑛  are weakly dominated by offer 𝑣  because 𝑔௣(𝑥, 2𝑣 − 𝑛) = 𝑔௣(𝑥, 2𝑣 − 𝑛 + 1) = 𝑥 ≤ 𝑣 = 𝑔௣(𝑥, 𝑣).  
After 𝑛 = 𝑣 rounds of elimination, the outcome table facing the club and 

player is as follows: 
1. In case of 𝑣 being an odd number, that is, 𝑣 = 2𝑘 − 1, 𝑘 ≥ 2, note 

that 𝑛 = 𝑣 = 2𝑘 − 1, 2𝑣 − 𝑛 = 𝑣, 𝑛 − 1 = 𝑣 − 1. 
 

Table A17. The outcome table after 𝑛 = 𝑣 round of elimination when the 
parties are extremely risk-averse (the case of 𝑣 being an odd number) 

 
Player 

 

 𝑣
Club 𝑣 − 1 𝑣

 𝑣 𝑣
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2. In case of 𝑣 being an even number, that is 𝑣 = 2𝑘, 𝑘 ≥ 2, note that 𝑛 = 𝑣 = 2𝑘, 2𝑣 − 𝑛 + 1 = 𝑣 + 1. 
 

Table A18. The outcome table after 𝑛 = 𝑣 round of elimination when the 
parties are extremely risk-averse (the case of 𝑣 being an even number) 

 
Player   

 𝑣 𝑣 + 1
Club 𝑣 𝑣 𝑣

Q.E.D. 

 




